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1 Introduction

?

Personal Rapid Transit (PRT) is a new urban transport mode. It will use small, computer-
guided vehicles to carry individuals and small groups between pairs of stations on a dedicated
network of guideways. The vehicles will operate on-demand and provide direct service from
origin station to destination station, much like conventional taxis...

2 Testing....
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2.1 Blah

2.1

The world’s first PRT system is in the final stages of commissioning at London’s Heathrow
Airport (ULTra PRT, 2010). It is a “last mile” circulator with three stations and twenty-one
driverless vehicles (Figure 1), connecting a business car park with Terminal 5. Many other
recently proposed PRT systems provide connections between train stations, bus stations or
off-site car parks and a wide range of destinations (Bly and Teychenne, 2005). Used in this way,
PRT can increase the efficacy of other public transport modes and create new possibilities for
urban planning. In order for PRT to play this role, it must provide a high-quality service, which
means low passenger waiting times, low travel times and high levels of safety and comfort.
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Figure 1: Photograph of PRT vehicle and at-grade station at London Heathrow Airport. PRT
vehicles, stations and infrastructure are smaller than typical Automated People Mover and
urban rail systems. Vehicle length, width and height are 3.7m, 1.4m and 1.8m, respectively.
Photo courtesy of ULTra PRT Ltd

The focus of this paper is on methods for moving empty vehicles to provide low passenger
waiting times. Deciding which vehicles to move and where to move them is known as the
empty vehicle redistribution (EVR) problem. It is assumed that passengers request immediate
service (they do not book ahead) from their origin station to their chosen destination station.
A central control system can move empty vehicles either reactively, in response to a request
that has just been received, or proactively, in anticipation of future requests. Without proactive
movements, empty vehicles tend to wait idle at stations where there is a net inflow of occupied
vehicles. This leads to long passenger waiting times at stations where there is a net outflow of
occupied vehicles, because a passenger’s waiting time is often equal to the travel time of the
empty vehicle assigned to serve him (Lees-Miller et al., 2010). Clearly, proactive movement of
empty vehicles in anticipation of future arrivals can reduce waiting times, but there is a risk of
unnecessary empty vehicle travel.

This paper proposes two EVR heuristics that can move vehicles proactively, and it develops
methods for assessing the performance of EVR heuristics absolutely, both in terms of through-
put and in terms of passenger waiting times. The proposed heuristics are evaluated using
these methods and in simulation, and they provide lower waiting times than other algorithms
in the literature. The results show that proactive movement of empty vehicles significantly re-
duces mean passenger waiting times, typically with a modest increase in empty vehicle travel.

The basic PRT system model is adapted from the urban taxi model of Bell and Wong (2005)
(section 3). When a request is received, the vehicle that minimizes the request’s waiting time
is immediately assigned to serve the request. This is a reactive algorithm, and it assumes
no knowledge of future requests. In order to improve on this, it is assumed that, while future
requests are not known with certainty, the average request rates between each pair of stations
are known from historical data, in the form of an origin-destination demand matrix. In vehicle
routing terminology, this makes the EVR problem dynamic (because requests are received
while the system is operating) and stochastic (because statistical information about future
requests is available).

However, it proves useful to first consider two deterministic versions of the EVR problem. In the
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fluid limit problem, the variables are long run average flows of vehicles, rather than individual
vehicle movements. Analysis in the fluid limit gives a way of benchmarking EVR algorithms in
terms of throughput (section 4). In the static problem, all future requests are assumed to be
known in advance. An optimal solution to the static problem provides a benchmark in terms of
passenger waiting time (section 5).

The two proposed heuristics are extensions of the basic model to allow proactive movements.
The Sampling and Voting (SV) heuristic works by generating an ensemble of possible se-
quences of future requests from the demand matrix over a given finite horizon. Each se-
quence, together with the current state of the system, defines an instance of the static EVR
problem whose (approximate) solution suggests a plan of empty vehicle movements. Features
of these plans that are common across the ensemble are then extracted to determine which
empty vehicles should actually be moved (section 6). The Dynamic Transportation Problem
(DTP) heuristic works by attempting to maintain a given target number of vehicles inbound to
each station. The problem of satisfying the targets with minimum empty vehicle movement is
a classical transportation problem (section 7). The SV algorithm was first introduced in Lees-
Miller and Wilson (2011), but the presentation here is different; the DTP algorithm has not been
described previously......

(TODO MORE ON RELATED WORK...) PRT has much in common with a conventional hack-
ney service, and the principle of proactively moving empty vehicles is applicable to conven-
tional taxis. Moreover, the PRT system model used to implement the algorithms described in
this paper is exactly the urban taxi model of Bell and Wong (2005), with zones replaced by
PRT stations. So, these conclusions may also be of interest to taxi operators. On proactively
moving empty taxis: Rank Homing (Horn, 2002): special case of TP. Random roaming (Lee et
al., 2004), or in macroeconomic model (taxi). Alshamsi (2009) – maybe – must review notes.
Seow et al. (2010) mention it as future work. The Li (2006) thesis. The static problem is
to decide how to move empty vehicles when all requests are known in advance. Whereas
the dynamic problem models a pure hackney service, the static problem models a pure livery
service, in which every request is ‘phoned in’ before any vehicles are moved.

3 The Model

The three main factors that determine passenger waiting times are congestion on the guideway,
congestion in stations and the availability and location of empty vehicles. For very large sys-
tems with many vehicles, congestion effects are often significant, but most systems proposed
for the near and medium term will operate well below the congested limit. This motivates the
following simplifying assumptions.

1. Congestion on the guideway is ignored, so vehicles take quickest paths, and the travel
times between stations are constants.

2. Congestion in stations is ignored; any delays in stations are constants included in the
travel times.

3. The requested average flows of occupied vehicles between stations are known, in the
form of an origin-destination matrix derived from historical data, and these averages are
steady (they do not change with time).

The relevant input data are then as follows. Let S be the set of stations. For each pair of
stations i and j, let Tij be the travel time from i to j, in minutes, with Tij = 0 if i = j. Similarly,
let Dij be the number of occupied vehicle trips per minute from i to j, with Dij = 0 if i = j.

The PRT system model used in this paper is based on the urban taxi model of Bell and Wong
(2005). Let K be the set of vehicles, and let nK be the fleet size (nK = |K|). Each vehicle
k ∈ K has a planned route, which consists of a list of stations that it must visit in order. Each
pair of adjacent stations defines a trip, during which the vehicle may be occupied or empty.
A vehicle’s route changes over time: completed trips are deleted from the head, and new
occupied or empty vehicle trips are appended to the tail as they are assigned. If a vehicle
completes all of the trips in its list, it becomes idle at the last station on its route. For simplicity,
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Figure 2: Illustration of the BWNN algorithm. There are four off-line stations (labeled A - D)
in a ring and two vehicles (labeled 1 and 2). Traffic flow is counter-clockwise. (a) Vehicle 1 is
initially moving to station B, and vehicle 2 is idle at station A. (b) When a request for travel from
C to D is received, vehicle 1 is assigned, because it gives a smaller waiting time than vehicle
2. The new request is appended to vehicle 1’s request list; this requires an empty vehicle trip
(dashed line) from B to C and an occupied trip (solid line) from C to D. Note that vehicle 1
stops at station B and station C (filled circles), but it does not become idle at either station,
because it has not finished with its request list. (c) However, vehicle 1 does become idle at
D, because no further requests are assigned to it. (d) When another request is received from
C to A, vehicle 2 is assigned, and it begins an empty trip to C. Vehicle 2 was idle at A, so it
could have moved to C proactively, if the request from C had been anticipated; this would have
reduced the passenger’s waiting time.

it is assumed that the lists are not reordered, so for each vehicle k ∈ K, it is enough to know
the last station, dk, that vehicle k was assigned to visit, and the time, ak, at which the vehicle
will arrive (or has already arrived) at dk. With this notation, an idle vehicle is one whose ak is
in the past.

When a new request for travel is received, a vehicle is immediately assigned to serve it. Each
request, r, has associated with it an origin station ir, a destination station jr and the time er at
which the system receives the request. It is assumed that each request is for immediate travel
from its origin station, so the waiting time of the request is the delay between er and when the
assigned vehicle picks up the request at ir.

The following heuristic, here called Bell and Wong nearest neighbours (BWNN), is used to
decide which vehicle to assign. When a request r is received at time er, BWNN immediately
assigns the vehicle

k∗ = argmin
k∈K

[max {0, ak − er}+ T (dk, ir)] (1)

where the travel times Tij are written T (i, j) here for readability. The first term, max{0, ak−er},
is the earliest time that the vehicle can start a new trip; note that the vehicle cannot begin its
trip in the past, before er. The second term, T (dk, ir), is the required empty vehicle trip time;
if k is already going to the request’s origin station (dk = ir), then the empty vehicle trip time is
zero, because no empty trip is required. Figure 2 gives an illustrated example.

The BWNN algorithm is reactive, because it moves vehicles only in response to requests. This
tends to result in idle vehicles accumulating at stations with a net inflow of occupied vehicles,
which in turn causes long waiting times at stations with net a outflow of occupied vehicles. The
following sections motivate and describe heuristics for extending this basic reactive model to
move idle vehicles proactively.

4 The Fluid Limit EVR Problem

The fluid limit deals with long run average flows of vehicles, rather than individual vehicle trips.
In particular, the aim here is to find the flows of empty vehicles, Xij , that are needed to balance
the given flows Dij of occupied vehicles. The result is a classical transportation problem that
is well-known in the PRT literature (Anderson, 1978) and can also be derived from the urban
taxi economics model of Yang et al. (2002). The main output of this fluid limit analysis is a
measure of the theoretical maximum throughput of the system, which provides a benchmark
against which EVR algorithms can be compared (Lees-Miller et al., 2010).

The transportation problem in the fluid limit is formulated as follows. Let si =
∑

j(Dji − Dij)

be the occupied vehicle flow surplus at station i, and partition the stations into S+ = {i ∈ S :
si ≥ 0} and S− = {i ∈ S : si < 0}. The stations in S+ have a net inflow of occupied vehicles
on average, and the stations in S− have a net outflow on average. The flows of empty vehicles
(Xij) required to balance the total inflows and outflows can then be found from the following

5



transportation problem:

min
∑
i∈S+

∑
j∈S−

TijXij (2)

s.t.
∑
j∈S−

Xij = si ∀ i ∈ S+ (3)

∑
i∈S+

Xij = −sj ∀ j ∈ S− (4)

Xij ≥ 0 ∀ i ∈ S+, j ∈ S−

The objective (2) is to minimise the average number of moving empty vehicles (minutes, times
vehicles per minute, gives vehicles), and constraints (3, 4) ensure that the empty vehicle flows
balance the inflows and outflows of occupied vehicle flows. This problem can be solved effi-
ciently using standard techniques (Bertsimas and Tsitsiklis, 1997).

An important use of this analysis is to define the intensity of the demand (Lees-Miller et al.,
2010), which is the total number of vehicles (occupied and empty) required, according to the
fluid limit analysis, divided by the number of vehicles actually available, nK . In particular, the
objective (2) gives the number of empty vehicles required, and the number of occupied vehicles
required can be computed similarly to give the intensity of the demand as

ρ =
1

nK

n∗X +
∑
i,j

TijDij

 (5)

where n∗X is the optimal objective value (2). Intensity one corresponds to maximum throughput.
When ρ > 1, requests are arriving faster than the system can serve them, because it does not
have enough vehicles. This means that both the number of passengers waiting and their
waiting times will grow indefinitely, so long as the demand is held constant. When ρ < 1, the
system may (depending on how efficiently it uses empty vehicles) be able to keep up with
demand. So, while this fluid limit analysis does not give a direct measure of passenger waiting
times, the intensity of the demand is an important factor. The term intensity is motivated by
similar definitions in the theory of queueing systems.

The fluid limit problem provides a benchmark for throughput, but it does not provide much
information about waiting times; this requires a more detailed model, such as the one in the
next section.

5 The Static EVR Problem

In the static problem, it is assumed that all requests are known in advance instead of being
revealed while the system is operating. This problem is of interest because an optimal solution
for an instance of the static problem provides a benchmark for waiting times, and also because
the static problem motivates the SV method for the dynamic problem (section 6).

The static EVR problem can be formulated as a multivehicle truckload pickup and delivery
problem with time windows, which is a well-studied (Yang et al., 2004) vehicle routing problem.
An instance of the static EVR problem requires that the initial state of the vehicles and all
requests over a given finite horizon be known. For simplicity, let the current time be time zero,
adjust the vehicles’ ak times accordingly, and set ak = 0 for vehicles that are currently idle. Let
R be the set of requests with er within the horizon. All of the ir, jr and er are known at time
zero, and er is the earliest time that request r can be picked up.

To translate the static EVR problem into a vehicle routing problem, we construct an auxiliary
vehicle-request graph, G, with one node for each vehicle, one node for each request, and a
sink node, s. The routing problem is to find the best routes in G that serve all of the requests.
Each route must start from a vehicle node, go through zero or more request nodes, and end
at the sink node. More formally, the node set of G is K ∪R ∪ {s}, and the edge set is {(u, v) :
u ∈ K ∪R, v ∈ R∪{s}, u 6= v}. The routing objective is to minimize mean request (passenger)
waiting time, which is known as a minimum latency objective. The requirement that request r
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be picked up only after er is a one-sided time window constraint. The edge costs encode the
required travel times in the PRT network, with

cuv =


au + T (du, iv) u ∈ K, v ∈ R
T (iu, ju) + T (ju, iv) u, v ∈ R, u 6= v

0 otherwise

(6)

The cost (6) of an edge from vehicle k to request r includes the time required for k to finish
serving previously assigned requests (if any) plus the required empty vehicle trip time (if any).
Similarly, when both u and v are requests, the cost includes the occupied travel time T (iu, ju)
for request u and any empty travel time T (ju, iv) required in order to serve v directly after u.

The static EVR problem is NP-hard, because the corresponding routing problem on G gener-
alises the minimum latency version of the asymmetric travelling salesman path problem (AT-
SPP), which is NP-hard (Nagarajan and Ravi, 2008). In particular, the routing problem is a
minimum latency ATSPP when there is one vehicle and er = 0 for all requests. Small in-
stances can be solved exactly using standard techniques, but very large instances must be
solved in order to benchmark EVR algorithms, because waiting times must be averaged over
thousands of requests. These large instances can only be solved approximately, at present.

In this paper, large instances of the static EVR problem are solved using the following static
nearest neighbours (SNN) heuristic (Lees-Miller and Wilson, 2011). For each request r, in
ascending order by er, SNN chooses the vehicle

k∗ = argmin
k∈K

max {0, ak + T (dk, ir)− er} (7)

that minimizes the waiting time for request r. SNN is similar to BWNN (1), and in fact for
vehicles with ak ≥ er, the objective values in (1) and (7) are the same. However, if a vehicle
has ak < er, SNN allows the vehicle to start its empty trip before er, whereas BWNN does
not. In this sense, SNN moves empty vehicles proactively. If there are several vehicles that
minimize (7), one is chosen using the tie-breaking rules in Lees-Miller and Wilson (2011).
The vehicle state for k∗ (ak∗ and dk∗ ) is then updated accordingly, and the next request is
considered. Testing.

The solutions produced by SNN are not provably optimal, so other methods may produce lower
mean waiting times for a given instance; in this sense, the solutions are not, strictly speaking,
benchmarks. However, nearest neighbour heuristics have been found to produce high quality
solutions to other minimum latency routing problems (Fischetti et al., 1993, Larsen et al., 2004,
Swihart and Papastavrou, 1999). This is particularly true when the fleet size is large, because
each vehicle’s route tends to be short, and fleet sizes in PRT are large relative to those usually
studied in the vehicle routing literaturearst (the case study systems in section 8 have 200
vehicles). The intensity of the demand is also important in determining the difficulty of a given
instance; when the intensity of the demand is low, there are long delays between requests, so
most requests will simply be served in the order in which they are received. In fact, the SNN
heuristic finds solutions with zero waiting time (which are clearly optimal) when the intensity of
the demand is below about 80% on the case study systems.

Another use for the static problem is in the proposed Sampling and Voting heuristic, below.
Here are some new words.

6 New EVR Heuristic: Sampling and Voting (SV)

The sampling and voting (SV) heuristic moves idle vehicles proactively by generating an en-
semble of static problems, solving them approximately using SNN, and extracting common
features from the solutions in order to decide which idle vehicles should actually be moved.

When a new request is received at time t, SV assigns a vehicle using the BWNN algorithm.
Immediately after a vehicle has been assigned to serve the request, SV may then move idle
vehicles proactively. To decide which idle vehicles to move, an ensemble of nE possible se-
quences of nR future requests each is generated from the demand matrix. Each sequence in
the ensemble, together with the current state of the system, defines an instance of the static
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EVR problem. Each of these instances is solved approximately using the SNN algorithm, and
each resulting solution prescribes a sequence of empty vehicle trips, which constitutes ‘advice’
on which idle vehicles the system should actually move. However, because each solution is
computed for a (probably) different sequence of requests, they may offer conflicting advice. To
determine which action should actually be taken, a voting system is used. The system adopted
here is that at most one idle vehicle at each station may be moved. So, each solution casts
one vote on the best destination (as defined below) for an idle vehicle at each station i with
idle vehicles; note that it may vote for i, which means that it votes not to move any idle vehicles
from i at this decision point. If the destination with the most votes is not i, an idle vehicle at i is
selected (breaking ties on minimum vehicle index) and moved.

For each station i with idle vehicles, the destination to vote for are determined as follows. If
all vehicles now idle at i were used for requests from i, vote for i. Otherwise, if a vehicle now
idle at i was moved empty to another station, j, vote for j (for the first such trip). Otherwise,
if any vehicle was moved empty from i to another station, j, vote for j (for the first such trip).
Otherwise, vote for i. These voting rules are discussed in more detail in Lees-Miller and Wilson
(2011)....

7 New EVR Heuristic: Dynamic Transportation Problem (DTP)

The dynamic transportation problem (DTP) heuristic requires a target for the number of vehi-
cles that should be inbound to each station at any given time. If the number of vehicles inbound
to a station is below its target, idle vehicles should be moved there; conversely, if a station has
inbound vehicles in excess of its target, some of its idle vehicles may be moved elsewhere.
The problem of moving idle vehicles to meet targets with minimum empty vehicle running time
is a classical transportation problem.

The idea of maintaining a target number of vehicles at each station is common in the PRT liter-
ature (Andréasson, 1998, Anderson, 1998). The decision on which vehicles to move is typically
made according to rules that can be viewed as approximation algorithms for the transportation
problem. For example, when a station has a deficit, it may call the nearest idle vehicle at a
station with a deficit not greater than its own (Andréasson, 1998). The targets may be treated
as parameters to be tuned, or they may be set adaptively based on the history of past empty
vehicle movements (Andréasson, 1998). In this paper, the targets are treated as parameters
to be set using meta-heuristics, and the results are compared with a heuristic based on these
existing algorithms (section 8).

More formally, for each station i, let θi be the target number of inbound vehicles at station i.
Let t be the current time. Let bi be the number of vehicles that are inbound to i (that is, dk = i),
and let li be the number of vehicles that are idle at i (that is, dk = i and ak ≤ t); note that
bi ≥ li ≥ 0. We can now define

ui = min {bi − θi, li}

as the surplus of vehicles at station i. If ui > 0, station i has a surplus of inbound vehicles, but
only li of these are currently idle at i, so at most li vehicles can be moved now. If ui < 0, station
i has a deficit of inbound vehicles. In general, the surpluses and deficits need not balance, so
we introduce an extra dummy node q with uq = −

∑
i ui. Let S′ = S ∪ {q} and partition S′ into

sets S+
t = {i ∈ S′ : ui ≥ 0} and S−t = {i ∈ S′ : ui < 0}. Note that this partition may change

over time. For each i ∈ S+
t and each j ∈ S−t , let xij be the number of vehicles to send from

node i to node j, which is to be solved for. If i and j are both stations, then xij > 0 means
that xij vehicles which are currently idle at i are to move to station j. If either i = q or j = q,
then no vehicles are actually moved, regardless of the value of xij ; in other words, a decision
to move idle vehicles from or to the dummy node means that they should be left where they
are until the next decision point. The costs for sending vehicles to and from the dummy node
are zero (define Tiq = Tqi = 0), because none of these vehicles are actually moved.

The transportation problem to be solved has the same form as that in the fluid limit (2), but the
variables are xij instead of Xij , the surpluses are ui instead of si, and the stations (and q) are
partitioned into S+

t and S−t instead of S+ and S−. When the targets θi are integers, there is an
optimal solution in which all of the xij are integer, because it is a special case of the minimum
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cost network flow problem and the ui are integers (Bertsimas and Tsitsiklis, 1997, ch. 7). The
problem is solved exactly with the integer RELAX IV code (Bertsekas and Tseng, 1988).

The DTP heuristic is embedded in the PRT system model (section 3) as follows. When a
request is received, a vehicle is assigned using BWNN (1), as usual. Immediately after this,
the DTP transportation problem is formulated and solved to decide on proactive empty vehicle
trips. The transportation problem is also solved every time a vehicle becomes idle.....

8 Results

In this section, the proposed algorithms are evaluated in simulations on two case study sys-
tems. The main simulation outputs are passenger waiting times and empty vehicle use. The
steady state distributions of these outputs are estimated by running long simulations with the
demand matrix held constant for each run. Passenger requests from station i to station j are
generated from a Poisson process with rate Dij . For convenience, passenger arrival and travel
times are rounded to the nearest integer second.

The input data used here are the ‘Grid’ and ‘Corby’ networks and their corresponding demand
matrices from Lees-Miller et al. (2010) (for the Grid network, the demand matrix with dispersion
parameter θ = 0.01 is used). The fleet size is set at nK = 200 vehicles. Intensity one corre-
sponds to a total demand of 1414 requests/hour for the Corby system and 2035 requests/hour
for the Grid system.

The targets for the DTP algorithm are chosen using simulated annealing, as implemented in
the GNU Science Library (Galassi et al., 2003). An initial estimate of the levels targets is
obtained from the fluid limit problem (2), namely

θ̂i =

∑
j

i 6=j

(Dji +X∗ji)Tji


∑

j
i 6=j

Dij

Dij +X∗ij

 .

The first factor is the number of vehicles that are expected to be inbound to station i on average,
and the second factor is the fraction of vehicles that leave station i occupied. The rationale
for the second factor is that if most of the vehicles leaving station i are empty, on average,
then the station should not attempt to retain very many vehicles. Neighbouring solutions were
generated by adding -1, 0 or 1 with equal probability to each target. The initial temperature was
set to 10; the temperature decay factor was 1.01; the final temperature was 0.1; 10 evaluations
were performed at each temperature; the Boltzmann constant was set to 1. Each energy
evaluation was a simulation with 20000 requests. Two trials were performed for each point
Figure 3, for a total of around 9200 energy evaluations per point.

For comparison, another EVR algorithm, here called the Surplus / Deficit (SD) algorithm, is also
evaluated. It is an algorithm for the dynamic EVR problem that moves vehicles proactively. The
general approach in SD is similar to several other published EVR algorithms Anderson (1998);
it is most similar to that of Andréasson (1998). Each station i has an associated call time τi,
which is the cumulative average of all previous empty vehicle trip times to that station. The
surplus of vehicles at station i is the number of inbound vehicles minus the expected number
of requests over the call time, namely τi

∑
j Dij . When a new request is received, a vehicle

is assigned using BWNN. Immediately afterward, SD may move idle vehicles proactively, as
follows. For each station i with idle vehicles, in descending order by number of idle vehicles,
if the surplus of vehicles at i is greater than or equal to one, an idle vehicle at i is sent to the
nearest station with surplus less than zero (if any). Additionally, when a vehicle becomes idle
at station i, the above actions are taken for station i only.

Figure 3(a) compares the mean waiting times observed for the five heuristics on the Corby
system. An important observation is that waiting times increase rapidly as intensity approaches
one, regardless of which EVR algorithm is used, as is expected based on the definition of
intensity (5). In practice, we are most interested in the system’s performance at around 70% to
90% intensity, because in this range the system is well-utilized, but acceptably low passenger
waiting times may still be obtained. At intensity 0.8, for example, mean waiting times are 355s
for BWNN, 41s for SD, 20s for DTP, 15s for SV. By moving vehicles proactively, SV reduces
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Figure 3: Mean passenger waiting times (a, b) and vehicle fleet utilization (c, d) for the Grid
and Corby networks for the five heuristics. The SV and DTP heuristics move idle vehicles
in anticipation of future requests, which reduces waiting times significantly below the BWNN
baseline and below the SD heuristic from the literature. The SNN algorithm operates with
perfect information about future requests in order to estimate how much further waiting times
might be reduced. Here there are nE = 50 sequences, each with nR = 300 requests for SV.
Each point is averaged over 10 independent runs of 50,000 simulated passengers each.
arst

mean waiting times by 96% from the BWNN baseline. The relative reduction decreases as
intensity increases, however, and in fact the SV, DTP and SD algorithms become increasingly
similar to the BWNN algorithm at higher intensities, because there are fewer idle vehicles to
redistribute.

Figure 3(c) shows that the reduction in passenger waiting times comes from a modest increase
in the average number of moving empty vehicles, or equivalently in empty vehicle travel time.
The largest increase occurs at intensity 0.91, and this is from 47 concurrently moving empty
vehicles with BWNN to 51 with SV (out of 200 vehicles). With perfect information about future
arrivals, SNN finds routes with average waiting times less than those for the dynamic case, as
expected; at intensity 0.8, the mean waiting time for SNN is 3s. Only mean waiting times are
reported, but the ranking of the four algorithms is the same at the 90th percentile of the waiting
distribution; at intensity 0.8, 90% of passengers wait less than 51s with SV and less than 106s
with SD.

Results for the Grid network are qualitatively similar, as shown in Figure 3(b, d). However, it
is notable that waiting times diverge at around intensity 0.95, which is below the theoretical
maximum (intensity one). It thus appears that nearest neighbor algorithms of the type studied
here do not deliver maximum possible throughput; it is not yet known whether there is any
practical algorithm that does.

The results and conclusions presented here are consistent with simulations that have been
conducted on nine case study systems in total, with between 15 and 60 stations, between 50
and 600 vehicles, and total demand at intensity one between 360 and 5050 requests/hour.
However, it is possible to construct pathological systems in which the SV and DTP heuristics
perform poorly; details of these will be documented in (FORTHCOMING THESIS).

9 Conclusions

Future work: rerouting, MDP approach....
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